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ABSTRACT 

Photostability is important for current organometal halide perovskites being used as 

materials in light emitting devices, lasers, quantum dots and solar cells.  Illumination from 

different sources such as the sun, lamps, and lasers can alter the physical and PL stability of 

nanocrystalline perovskites.  This instability can be problematic for the use of perovskite 

quantum dots as molecular probes and lead to deterioration of perovskite-based solar cells.  Here, 

different synthetic pathways are being analyzed using luminescence microscopy to determine the 

most stable method(s) for preparing physically and PL λmax stable MA lead halide perovskite 

nanocrystals.  Dimensionality is controlled by capping with octylammonium ligands.  Two 

different precursor ratios are evaluated to determine which provide the highest photostability.  It 

is determined that the 1:1.5:1.5 PbX2:CH3NH3X:CH3(CH2)7X precursor ratio provides the most 

photo-stable MA lead halide perovskite nanocrystals. 
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CHAPTER 1. INTRODUCTION – METHYLAMMONIUM LEAD HALIDE 

PEROVSKITES 

1.1 General Introduction 

Perovskites are crystalline materials with the general formula ABX3 where A is a 

relatively small cation, B is a much larger cation compared to A, and X is an anion which bonds 

to both, typically at the edge centers.1  While a majority of the perovskites characterized in 

literature are all inorganic, containing both inorganic cations and anions, organic-inorganic 

hybrid perovskites have become highly studied in the past two decades.  A common hybrid 

perovskite is methylammonium (MA) lead iodide (CH3NH3PbI3) where CH3NH3
+ cation is the 

smaller “A” cation, Pb2+ is the larger “B” cation, and I- is the complementary “X” anion.  

Bromide and chloride are also used, other than iodide, are common anions used to produce MA 

lead halide perovskites. 

MA lead halide perovskites are currently being investigated in many areas of material 

science.  These materials are being evaluated for light-electricity conversion materials (solar 

cells),2,3 LEDs for displays,4 quantum dots,5,6 photo-detection,7,8 and lasing.9,10  The efficiency 

and usefulness of perovskite-based devices depend on the mechanical and photo stability of these 

materials.  Illumination from lamp sources (luminescence microscopy) and sunlight (solar cells) 

has been found to lead to the deterioration of the structural stability of MA lead halide materials 

leading to poor photostability.  Many modifications to the cation, anion, capping material, 

substrate, or photosensitizer have been investigated in order to improve their photostability.11-13 

MA lead halide perovskite photo-properties in the visible and near infrared (NIR) can be 

tuned by incorporating various amounts of Cl, Br, and I anions,14,15 shown in Fig. 1.1.  

CH3NH3PbCl3 perovskite nanocrystals have the lowest photoluminescence (PL) wavelength 
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maximum (λmax) near 400 nm.  CH3NH3PbBr3 perovskite nanocrystals have an intermediate PL 

λmax near 500 nm.  CH3NH3PbI3 perovskite nanocrystals have the highest PL λmax near 750 nm.  

Fig. 1.1 shows the lattice parameter and the absorption edge of each MA lead halide loading in 

toluene.  The x-axis represents the halide precursor (PbX2) loading, not necessarily the halide 

incorporation into the crystalline lattice. In chapter 3 of this dissertation, the single 

nanocrystalline luminescence spectra are collected in the dry state. The solvent, and whether a 

solvent is used to collect the spectrum, affect the PL λmax.  

 

Fig. 1.1. (Black) Lattice parameter over a range of Cl, Br, and I compositions including mixed 

Cl/Br and Br/I loading.  (Red) Adsorption edges of various perovskite nanocrystals over a range 

of Cl, Br, and I compositions including mixed Cl/Br and Br/I loading.  Collected by Dr. Long 

Men of the Vela group.16 

 

1.2 Precursor Effects on Perovskite Nanocrystal Photostability 

 There are a multitude of synthetic methods to produce perovskite nanocrystals.  Two 

synthetic pathways utilizing different precursor ratios will be discussed: (1) 1:1.5:1.5 

PbX2:CH3NH3X:CH3(CH2)7X and (2) 1:3:3 PbX2:CH3NH3X:CH3(CH2)7X. Data presented in 

Chapter 2 suggests a lower precursor ratio of 1:1.5:1.5 produces more photostable perovskites.  

Other than the precursor ratio, the relative abundance of different halides in the mixed-halide 

MA lead halide perovskites can affect the photostability of the nanocrystals.  Fig. 1.2 shows the 

stable luminescence λmax of a single CH3NH3PbI3 nanocrystal (Fig. 1.2b) and the shift in λmax of 
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a single mixed CH3NH3Pb(I0.8Br0.2)3 nanocrystal (Fig. 1.2a).  The shift in λmax of the mixed 

halide nanocrystal could be due to light-induced phase transformations to I-rich and Br-rich 

domains, which are investigated using in-situ x-ray diffraction (XRD) experiments and are 

further discussed in Chapter 2.  

 

Fig. 1.2. Time correlated luminescence spectra of single (a) CH3NH3Pb(I0.8Br0.2)3 (80% iodide 

and 20% bromide loading) and (b) CH3NH3PbI3 (100% iodide loading) perovskite nanocrystals.  

The void for the first 2 seconds corresponds to the off-time of the 532 nm excitation source. 

 

1.3 Blinking Characteristics of Methylammonium Lead Halide Perovskites 

Inorganic quantum dots are prone to exhibit luminescence intermittency, or blinking.17-19  

This phenomenon is represented by periods of luminescence (bright) and non-luminescence 

(dark).  MA lead halide nanocrystals also exhibit this blinking behavior.20,21  While blinking can 

be advantageous for luminescent molecular probes, allowing for a confirmation that the signal is 

generated from one nanocrystal at a specific location, blinking can also be an indicator of the 

presence of structural defects.  Specifically, surface defects can lead to a blinking behavior in all 

inorganic quantum dots.22  Surface traps lead to non-radiative recombination of electrons and 

holes generated upon illumination of nanocrystalline materials. Fig 1.3 represents the 

luminescence intensity over time of a single CH3NH3Pb (Br0.50I0.50)3 nanocrystal which exhibits 
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luminescence intermittence.  Chapter 3 discusses the blinking properties of CH3NH3Pb (Br1-xIx)3 

nanocrystals. 

 

Fig. 1.3. Representative luminescence intensity versus time graphs for a single CH3NH3Pb 

(Br0.50I0.50)3 nanocrystal. The dotted red line represents the intensity value which is three standard 

deviations above the average background signal.   

 

1.4 Phase Transformations under Photoillumination  

 In order to test the hypothesis of phase transformation of the mixed halide perovskite 

nanocrystals, a control experiment was conducted under the same experimental in-situ laser 

illuminated XRD experiments elaborated on in chapter 2.  The control analyte was a 

photoswitchable molecule, trans-azobenzene.  Trans-azobenzene undergoes a trans- to cis-

isomerization change under laser illumination or under high thermal pressure.23-25  An 

observation of a shift in XRD peaks corresponding to a trans- to cis- isomerization in azobenzene 

is observed. This observation confirms that the in situ laser illumination during XRD collection 

does provide an environment where photochemical reactions can occur.  This result confirms that 

the shift in λmax of the mixed halide perovskite nanocrystal is not due to a solid-phase I- and Br- 

domain shift.  
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1.5 Structure of Thesis 

 Chapter two discusses the effects of the MA lead halide nanocrystal precursor ratio and 

the iodide and bromide loading on λmax stability under 1 × 105 W/cm2 laser illumination.  Chapter 

three discusses the blinking statistics of the Cl-, Br-, and I-based single MA lead halide 

nanocrystals.  Chapter four discusses the experiments studying the in-situ laser illuminated trans- 

to cis-azobenzene isomerization.  The experiments described in Chapter four show that a shift in 

the photo-switchable azobenzene molecule during an in-situ XRD experiment, which show that a 

shift could be observed in the perovskite materials if in fact there was a shift in the XRD 

spectrum. This work paves the way for measuring phase shifts in situ in perovskite and other 

materials. 
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CHAPTER 2.  SYNTHETIC CONTROL OF THE PHOTOLUMINESCENCE 

STABILITY OF ORGANOLEAD HALIDE PEROVSKITES 

Modified from a manuscript published in The Journal of the Mexican Chemical Society (2019); 

reproduced with permission. 

Daniel J. Freppon,1,2 Long Men,1,2 Ujjal Bhattacharjee,1,2 Bryan A. Rosales,1 Feng Zhu,1 Jacob 

W. Petrich,1,2 Emily A. Smith,*1,2 Javier Vela*,1,2 

1Department of Chemistry, Iowa State University, and 2Ames Laboratory, Ames, Iowa 50011 

*Corresponding Authors email: esmith1@iastate.edu, vela@iastate.edu 

Abstract 
 

An optimized synthetic procedure for preparing photostable nanocrystalline 

methylammonium lead halide materials is reported. The procedure was developed by adjusting 

the lead halide to methylammonium/octylammonium halide precursor ratio. At a high precursor 

ratio (1:3), a blue-shifted photoinduced luminescence peak is measured at 642 nm for 

CH3NH3PbI3 with 0.01 to 12 mJ pulsed-laser irradiation. The appearance of this peak is 

reversible over 300 min upon blocking the irradiation. In order to determine if the peak is the 

result of a phase change, in situ x-ray diffraction measurements were performed. No phase 

change was measured with an irradiance that causes the appearance of the photoinduced 

luminescence peak. Luminescence microscpectroscopy measurements showed that the use of a 

lower precursor ratio (1:1.5) produces CH3NH3PbI3 and CH3NH3PbBr3 perovskites that are stable 

over 4 min of illumination. Given the lack of a measured phase change, and the dependence on 

the precursor ratio, the photoinduced luminesce peak may derive from surface trap states. The 

enhanced photostability of the resulting perovskite nanocrystals produced with the optimized 

synthetic procedure supports their use in stable optoelectronic devices. 

mailto:vela@iastate.edu
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2.1 Introduction 

 

Organolead halide perovskite semiconductors of general composition RPbX3 (R = 

organic monocation, such as CH3NH3
+; X = halide, such as I- or Br-) have drawn attention as 

both photovoltaic1,2 and optoelectronic3 materials. Broad light absorption and long carrier 

diffusion lengths make perovskites ideal light harvesters.4  The certified power conversion 

efficiency of perovskite solar cells surged from 3.8% to over 22% in the last 8 years.5-10   In spite 

of these many advantages, organometal halide perovskites suffer from instability against 

moisture, heat and light.11-13  A deeper understanding of the fundamental physical and chemical 

behavior of perovskites could help in mitigating these instability issues, thus enabling their 

implementation and deployment into many energy technologies.14,15   

 Efforts to improve the physical and chemical properties of perovskites have focused 

primarily on tuning their composition or dimensionality.16,17  Compositional and dimensional 

control are useful in tuning the bandgap energies of some perovskite materials.18,19  Partial 

substitution with long alkylammonium cations leads to low dimensional perovskites,20-22 some of 

which exhibit enhanced moisture stability. Control of optoelectronic properties through mixing 

cations and halides has been widely exploited in enhancing the power conversion efficiency of 

perovskite solar cells.   Compositional variants of halide perovskites have bandgap and 

luminescence energies that cover the entire visible spectrum.9,23-25  Halide substitution also leads 

to enhanced stability, as CH3NH3PbI3 solar cells doped with Br show long-lasting resistance 

against humidity.26,27  CH3NH3PbBr3 displays lower sensitivity to concentrated sunlight 

compared to CH3NH3PbI3.
22,28 

 A few reports describe the unusual photophysical behavior of organometal halide 

perovskites, specifically a reversible shift in photoluminescence maximum (PLmax) under thermal 
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and photochemical conditions.29-31  Gottesman et al. observed a decrease in luminescence 

intensity and increase in the 108-cm-1 Raman band of CH3NH3PbI3 solar cells and attributed 

these changes to slow photoinduced structural changes since the timescale of the change was not 

consistent with an electronic process.31  Sadhanala and co-workers measured two absorption 

peaks in freshly-prepared, mixed-halide (CH3NH3Pb(Br1-xIx)3 perovskite  films.  A single 

absorption band, however, was measured after aging the film for 21 days.30  Hoke et al. have 

also reported light-induced changes to the absorption and photoluminescence spectra of 

CH3NH3Pb(Br1-xIx)3 perovskite films. They attribute these behaviors to reversible crystalline 

changes and trap states 29. Structural defects may also account for the notorious photocurrent 

hysteresis32,33 and increased quantum efficiency with heavier halide species34 that characterizes 

perovskite semiconductors and devices.  Unusual photo physics that are caused by surface 

defects may become even more prominent in nanocrystalline perovskites.35 

 Trap states in perovskites. CH3NH3PbI3 has a broad emission band and a high quantum 

yield of photoluminescence. The nature of the radiative decay channels and the spectral 

broadening mechanisms are largely determined by phonon coupling effects and defects or trap 

states 36.  Trap states are more problematic near surfaces and interfaces since they are the 

locations where defects to the perovskite crystal structure are most likely to occur.35  Vacancies, 

such as ionic defects like Pb+, I-, and CH3NH3
+

, can also form shallow trap states and reduce 

carrier lifetimes.37  Strong covalency of the Pb cations and I anions lead to the formation of Pb 

dimers and iodide trimers, which are responsible for transition levels that can serve as 

recombination centers that reduce solar-cell performance.38  Trap states increase the frequency of 

non-radiative recombination, which  reduces the QY 39.  Density-functional theory studies have 
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revealed the unusual defect physics of CH3NH3PbX3 
37,38,40-42.  For example, shallow point 

defects partially explain ultra-high open-circuit voltages of CH3NH3PbBr3 solar cells.42   

Synthetic conditions play an important role in the formation of trap states. For example, 

perovskites grown under high iodine concentrations are likely to have defects (lead atom 

substituted by iodide) and a high density of deep electronic traps (recombination centers) that 

cause short diffusion lengths and poor photovoltaic performance 43.  Supramolecular halogen 

bond complexation can passivate the under-coordinated iodine ions, which can reduce trap sites 

near the perovskite surface;44 whereas Lewis bases are used to passivate under-coordinated lead 

atoms, and treated perovskites exhibited reduced electron-hole recombination and a consequently 

longer photoluminescence lifetimes.45  Adding fullerene layers has also proven to be an effective 

way to passivate the charge trap states and get rid of photocurrent hysteresis.32,46  

Building on our previous work,24 a systematic synthesis of photostable nanocrystalline 

CH3NH3PbX3 is demonstrated. Optimization of the CH3NH3PbI3 alkyl halide to lead halide 

precursor ratio inhibited the appearance of a reversible photoinduced 630-nm photoluminescence 

peak that may be derived from surface traps. Using an optimized synthetic procedure, 

luminescence of single CH3NH3PbI3 and CH3NH3PbBr3 nanocrystals was stable over 240 

seconds with over 1 × 105 W/cm2 irradiance. The reported optimized synthesis may be applicable 

to other organometal halide perovskites, for example those with mixed halide composition. 

2.2. Experimental 

2.2.1 Materials 

Lead (II) bromide (≥ 98%), N, N-dimethylformamide (DMF), Lead (II) iodide (99%), 

methylamine (33 wt% in ethan ol), n-octylamine (99%), and (anhydrous, 99.8%) were purchased 

from Sigma-Aldrich. Hydrobromic acid (ACS, 47.0-49.0%), hydroiodic acid (ACS, 55-58%), 
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and oleic acid (tech., 90%) from Alfa-Aesar; diethyl ether from Baker; toluene (99.9%) and 

acetonitrile (99.9%) from Fisher. Materials were used as received unless specified otherwise. 

2.2.2 Synthesis  

Ammonium Halides. Dimensionality control is achieved using a bulky alkylammonium 

cation as a capping ligand. Hydrogen halides were prepared by a modified literature procedure.37 

Briefly, hydroiodic acid (10 mL, 0.075 mol) or hydrobromic acid (8.6 mL, 0.075 mol) was added 

to a solution of excess methylamine (24 mL, 0.192 mol) in ethanol (100 mL) at 0 °C, and the 

mixture stirred at this temperature for 2 h. The sample was concentrated under vacuum, and the 

resulting powder dried under dynamic vacuum at 60 °C for 12 h and recrystallized from ethanol. 

Both n-octyl ammonium iodide (CH3(CH2)7NH3I) and n-octyl ammonium bromide 

(CH3(CH2)7NH3Br) were washed repeatedly with diethyl ether and dried under dynamic vacuum 

before use. 

Nanocrystalline CH3NH3PbX3. PbX2 (0.008 mmol), CH3NH3X (0.012 mmol) and 

CH3(CH2)7NH3X (0.012 mmol) were dissolved in a mixture of acetonitrile (20 mL) and DMF 

(200 µL). 4 mL of the resulting precursor solution was rapidly injection into toluene (15 mL) 

while stirring. After 24 h stirring at 20 °C, solids were isolated by centrifugation (10 min at 4000 

rpm) and purified by washing with toluene (5 mL) followed by re-centrifugation.  

2.2.3 Structural Characterization 

X-Ray Diffraction (XRD) was collected on a Rigaku Ultima IV (40 kV, 44 mA). A Cu 

KR source was used for radiation. A quartz sample holder was used as a substrate for drop-casted 

toluene solvated samples. Details of the in situ measurements were as previously reported.47 

Transmission Electron Microscopy (TEM) images were collected using a FEI Technai G2 F20 

field-emission TEM capable of 200 kV with a point-to-point resolution of less than 0.25 nm 
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having a 0.10-nm line-to-line resolution. Dilute solutions were prepared in toluene and 2 to 3 

drops of each product were placed onto carbon-coated copper grids. TEM was used to measure 

the particle dimensions and processed using the ImageJ program. Typically more than 100 

particles were counted in each case. Uncertainties in all measurements are reported as standard 

deviations. 

2.2.4 Optical Characterization 

Solution-phase optical extinction (absorption plus scattering) spectra were collected using 

an Agilent 8453 UV/Vis spectrophotometer equipped with a photodiode array.  Solvent 

absorption was subtracted from all spectra. Drop-casted solid films of each sample was measured 

using diffuse reflectance (SL1 Tungsten Halogen lamp (vis-IR), a SL3 Deuterium Lamp (UV), 

and a BLACK-Comet C-SR-100 Spectrometer). A Horiba-Jobin Yvon Nanolog scanning 

spectrofluorometer equipped with a photomultiplier detector was used to collect steady-state PL 

spectra. Quantum yields for each nanocrystalline perovskite were determined comparing 

luminescence intensities of phodamine 590 or 640.48 

For the luminescence micro spectroscopy of single nanocrystals, a DM IRBE microscope 

(Leica, Wetzlar, Germany) was employed.  Monochromatic illumination at 532 nm (Coherent, 

Santa Clara, CA) was used to excite CH3NH3PbI3; and, at 488 nm (Argon Ion 488 nm, Uniphase, 

San Jose, CA) for CH3NH3PbBr3.   An oil-immersion (Leica, 100× HCX PL APO, 1.49 

numerical aperture) having a sample area diameter of 0.28 ± 0.03 μm was used providing an 

excitation power density of 1.6 × 105 W∙cm−2.  PL was collected using a HoloSpec f/1.8i 

spectrograph (Kaiser Optical Systems, Ann Arbor, MI, USA), equipped with a broad-range 

grating (HFG-650, Kaiser Optical Systems) and a charged-coupled device (CCD) (Newton 940, 
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Andor Technology, Belfast, UK) with a collection binning time of 0.05 s. 2400 spectra were 

collected every 0.09873 seconds. 

2.3. Results and Discussion 

2.3.1 General Synthesis and Characterization 

Nanocrystalline organ lead halide perovskites are prepared by dissolving PbX2 (a), 

CH3NH3X (b), and CH3(CH2)7NH3X (c) precursors (X = I or Br) in a polar solvent such as 

dimethyl formamide (DMF, ε = 38.25) or acetonitrile (ε = 36.64), followed by quick injection 

into a less polar solvent such as toluene (ε = 2.379) as shown in Scheme 1.22  DMF, acetonitrile, 

or both are used because they provide excellent precursor solubility, as we reported previously 

for the synthesis of perovskite nanowires.22  Introduction of a large ionic ligand, such as an 

ammonium or carboxylate-containing surfactant, decreases the perovskite particle size.  In this 

study, the concentration of the CH3NH3X and larger alkyl ammonium halide, n-

CH3(CH2)7NH3X, are equivalent.  In this way low-dimensional (nanocrystalline) perovskites are 

synthesized.16,35,49  Perovskite nanocrystals produced by this method contain methyl ammonium 

cations within their core, and octyl ammonium groups on their surface.50 

 
 

Scheme 2.1. Synthesis of nanocrystalline organ lead halide (X = Br or I) perovskites prepared 

using a molar concentration of alkylammonium halide precursor that is 3× higher than that of the 

lead halide precursor; 0 < z << 1. 

 

 

During the synthesis of iodide perovskites, the PbI2 precursor fails to dissolve completely 

in the co-solvent unless an excess of ammonium halide precursors is present.  A very large 

excess of ammonium halides, however, irreversibly affects the optical properties of the resulting 

perovskites, as discussed below. Precursor reactivities and ease of forming solid solutions also 
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affect the product.  CH3NH3X salts dissociate differently in DMF depending on the specific 

halide (Scheme 2).  For iodide, the preferred products are CH3NH3
+ and I-, the conjugate base of 

HI, which is a strong acid in DMF and leads to a large conductivity (Scheme 2, Figure 1 when 

[PbX2]T = 0). For bromide the preferred products are CH3NH2 along with HBr, which is a 

weaker acid in DMF and leads to a smaller conductivity (Scheme 2, Figure 1 when [PbX2]T = 0). 

Thus, CH3NH3I is expected to be the most reactive ammonium halide precursor in DMF, 

generating free and readily available I- needed for perovskite formation that should be easily 

precipitated upon addition of a nonpolar solvent such as toluene.  

 

 

Scheme 2.2.  Pathways of CH3NH3X dissociation in DMF. 

To probe PbX2 precursor reactivity, we measured their specific conductivities (κ) in DMF 

with both the presence and absence of a set amount of the corresponding CH3NH3X (Fig. 2.1). 

As expected, in pure DMF, the conductivity increases linearly with PbX2 concentration. 

Conductivity is proportional to the number of ions in solution, thus enabling a comparison to the 

relative degree of dissociation and association. A steeper increase for the iodide case suggests 

that dissociation is slightly higher for PbI2 than for PbBr2. With the presence of 50 mM 

CH3NH3X in DMF, the conductivity actually decreases upon addition of PbI2 and slowly 

increases upon addition of PbBr2. When a 1 to 3 ratio of PbX2 to CH3NH3X is used, as is the case 

in the Scheme 1 perovskites, the conductivity is higher for PbI2/CH3NH3I than PbBr2/CH3NH3Br 

(a
)

(b) CH3NH2 + HX

CH3NH3
+ + X-

CH3NH3X DMF

Scheme 1.
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suggesting that Pb-Br binding in solution is stronger than Pb-I binding.  A similar observation 

was reported by luminescence and transient absorption measurements.51 

 

 

Figure 2.1. Specific conductivity (κ) vs. PbX2 concentration with (solid) or without (hollow) 50 

mM CH3NH3X. 

 

Structural Analysis.  Powder X-ray diffraction (XRD) patterns show the diffraction peaks 

corresponding to the <110> and <001> facets of the CH3NH3PbI3 and CH3NH3PbBr3 

nanocrystals (Fig. 2.2).  The bromide perovskites shift to higher 2 theta values since bromine has 

a higher electronegativity compared to iodine, indicating some degree of solid solution, 

consistent with literature.52,53  Table 2.1 presents the lattice parameter of cubic (or pseudo-cubic, 

in the case of CH3NH3Pb3) determined experimentally from the powder XRD data for both the 

CH3NH3PbBr3 and CH3NH3PbI3 nanocrystalline perovskites. The lattice parameter is equal in all 

directions for the CH3NH3PbBr3 material, while it is distorted in one dimension for the 

CH3NH3PbI3 counterpart. 
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Fig. 2.2. Powder XRD of nanocrystalline organometal halide perovskites with corresponding 

standard (std.) diffraction patterns. The red and green dashed lines correspond to the strongest 

(110) and (001) diffraction peaks in the standard patterns of iodide and bromide perovskites. 

 

The transmission electron microscopy (TEM) images shown in Fig. 2.3 reveal that the 

perovskites are primarily made of nanospheres with an average size of 7 ± 2 nm for CH3NH3PbI3 

and 8 ± 2 nm CH3NH3PbBr3.  The Bohr radii for bromide and iodide perovskites are 2 and 2.2 

nm, respectively.54 In addition to the nanospheres, the CH3NH3PbBr3 perovskites exhibit 

nanosheets making up ca. 10-20% of the total particles. As we previously reported, perovskite 

nanosheets are unstable under the TEM electron beam 22. The presence of nanosheets is a 

contributing factor for the preferred orientation behavior observed by powder XRD for 

CH3NH3PbI3 perovskite nanocrystals.  

 

Fig. 2.3. Representative TEM images of CH3NH3PbBr3 and CH3NH3PbI3 nanocrystalline 

perovskites.  
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3.2 Optical Properties and Photostability  

 Using a spectrofluorometer with arc lamp illumination and solution-based measurements, the 

max for CH3NH3PbI3 is 760 nm; and for CH3NH3PbBr3, 518 nm. This is consistent with 

literature reports for perovskites of similar composition.55-57  The CH3NH3PbBr3 perovskite 

sample has a 29-fold higher photoluminescence quantum yield (44%) compared to CH3NH3PbI3 

(Table 2.1).  

Table 2.1. Characterization parameters of low-dimensional organometal halide perovskites. 
1 lattice parameter (a)  
2 More than 100 nanocrystals measured 

 

 

Loading 

a (nm)1 Scherrer 

Size 

(nm) 

TEM2 

Size 

(nm) 

Abs. 

Edge 

(nm) 

First-Exciton 

Luminescence 

(nm) 

Quantum 

Yield (%) 

CH3NH3PbBr3 0.587 7 8±2 527 506 44 

CH3NH3PbI3 0.634 >100 7±2 774 745 1.5 

 

Nanocrystalline perovskites prepared using Scheme 1 with an a: b:c precursor ratio of 

1:3:3 exhibited two luminescence peaks in a flash photolysis experiment with nanosecond pulsed 

NdYAG laser illumination. One peak had a max at 745 nm (Eg) and the second peak had a max 

at 642 nm (E>Eg) for CH3NH3PbI3 and 0.01 mJ pulsed-laser illumination (Fig 4a).  With 

increasing excitation energy the relative intensity of the 642 nm peak increases nonlinearly (Fig 

4b) and both peaks blue shift. With 12-mJ illumination, the max are 626 nm and 725 nm. 
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Fig. 2.4. (a) Flash photolysis luminescence spectra of nanocrystalline CH3NH3PbI3, prepared 

using Scheme 1, as a function of excitation power. The spectra are normalized to the intensity at 

~745 nm (at the max). (b) Intensity ratios of the ~642nm (I642) and ~745 nm (I745) bands vs. 
incident laser power.  The insert explains the band gap (Eg) of the nanocrystalline perovskite vs 

the higher energy trap state luminescence. 

 

To determine if the photoinitiated increase in the 642 nm peak intensity was reversible, 

the luminescence spectrum of the CH3NH3PbI3 nanocrystals was monitored in a new-batch of 

nanocrystals after blocking the laser irradiation.  After 300 minutes in the dark, the intensity of 

the band at 642 nm decreased due to a thermal relaxation mechanism.  The photoinitiated 

reversible spectral changes may be the result of changes in the crystal phase or the population of 

surface traps.  
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Fig. 2.5. Flash photolysis luminescence spectra of nanocrystalline CH3NH3PbI3 made with 

Scheme 1 showing thermal relaxation subsequent to laser illumination from a 532-nm, 15-mJ 

Nd:YAG providing nanosecond pulses. Time zero corresponds to the time when the laser was 

blocked from illuminating the sample. 

 

In order to rule out phase changes as the cause of the photoinduced spectral changes, we 

conducted in situ XRD experiments47 to search for  possible structural changes in the 

nanocrystalline perovskites during illumination with a pulsed laser.  An open window was used 

to the laser to irradiate the samples while mounted in the XRD instrument.  The nanocrystalline 

material was in the solid state so no solvent effects were present. The CH3NH3PbI3 

nanocrystalline perovskites exhibited no change in 2θ diffraction peak location or new peaks as a 

result of irradiation with a laser energy up to 15 mJ (Fig. 2.6).   The in situ XRD analysis 

revealed no additional or shifted diffraction peaks, which indicates that a phase transition does 

not occur upon illumination. 
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Fig. 2.6. X-ray diffraction patterns from nanocrystalline CH3NH3PbI3 perovskites at different 

pulse energies.  The laser illuminated the sample during the entire time XRD data were collected. 

 

Since a phase change was not measured upon irradiating the sample, the photoinitiated 

blue photoluminescence peak may result from surface trap states that are populated upon 

irradiation. In this case, the perovskites have traps with energies above the conduction band that 

emit at higher energies than the band gap (Fig 4b inset). An increasing population in trap states 

with increasing irradiation power could explain the increasing intensity of the 630-nm peak in 

going from 0.01 mJ to 12 mJ (Fig. 2.4).  Excess precursor may lead to higher energy emissive 

states which differ from the traditional nanocrystalline lattice expected for CH3NH3PbI3 

nanocrystals.  By using a precursor ratio of 1:1.5:1.5 (Scheme 2), the CH3NH3PbBr3 and 
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CH3NH3PbI3 exhibited only one luminescence peak at 540 nm and 800 nm, respectively (Fig. 

2.7a, 2.8a).  The disappearance of a second luminescence peak illustrates that bromide and iodide 

nanocrystalline perovskites prepared using Scheme 2 each have a single emitting state compared 

to the multiple emitting states observed for the nanocrystals prepared using Scheme 1 with a 

higher precursor ratio. This observation supports the hypothesis that a synthesis using the smaller 

ratio of precursors may result in nanocrystals with higher crystalline order and fewer defects 

compared to a synthesis using a larger precursor ratio.   

 

Scheme 2.3. Optimized synthesis of nanocrystalline organ lead halide (X = I or Br) perovskites 

prepared using a molar concentration of alkylammonium halide precursor that is 1.5× that of the 

lead halide precursor; 0 < z << 1. 

 

To examine the stability and of perovskites prepared using the optimized synthetic 

method with prolonged illumination, fluorescence micro spectroscopy of individual nanocrystals 

was employed. For this experiment, a batch of 24-hour-aged perovskites in toluene was divided 

into four samples. One sample was left as is, and is referred to as the “unwashed sample.” The 

second sample was mixed with additional 0.012-mM alkylammonium halide (i.e., the same 

concentration as the precursor solution) and was labeled “unwashed with excess precursor.” For 

the third and fourth samples, the perovskites were precipitated from the product solution and 

were resuspended in toluene (“washed sample”) or a 0.01- mM alkylammonium halide solution 

in toluene (“washed with excess precursor sample”).  
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Fig. 2.7 Time-correlated luminescence micro spectroscopy spectra of single CH3NH3PbI3 

perovskites. The left column shows the plots show luminescence versus illumination time with a 

532 nm laser (1.58 × 105 W/cm2) for CH3NH3PbI3 perovskites synthesized using Scheme 2. The 

samples are: (a) unwashed sample, (b) washed sample, (c) unwashed with excess precursor, and 

(d) washed with excess precursor sample.   The right column shows the average max versus 
illumination time (n=3). 

 

The CH3NH3PbI3 perovskites prepared using Scheme 2 exhibited a constant λmax of 800 

nm for all samples except the unwashed sample that had added precursor. For the latter, the λmax 

shifts from 737 nm at the start of illumination to 767 nm after 240 s of illumination. Thus, for 

CH3NH3PbI3 additional precursor affects the photostability whether it is present during the 

synthesis or added post synthesis. While the λmax is stable for most of the CH3NH3PbI3 samples, 

the luminescence intensity is variable over the measurement period and photo brightening or 

photobleaching was measured for most of the nanocrystals (Fig. S2.2). We have previously 

reported and discussed this behavior 57. The nanocrystalline CH3NH3PbBr3 perovskites prepared 

using the optimized synthesis (Scheme 2) exhibited a constant luminescence λmax around 540 nm 
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(Fig. 2.8) for all samples, even when additional precursor was added to the washed nanocrystals. 

(No shifts of λmax greater than 4nm were measured). This indicates that the higher precursor 

concentration must be present during the synthesis to have an effect on generating the 

photoinitiated luminescence peaks for CH3NH3PbBr3. Photo brightening and photobleaching 

were also recorded for CH3NH3PbBr3 nanocrystals (Fig. S2.3). Freppon et al report the emission 

of these nanocrystals to be 498 nm.  This reported wavelength was measured in toluene.57  The 

red shift in λmax can be accounted for the time-correlated luminescence spectra being collected in 

a dry state. 

 

Fig. 2.8 Time-correlated luminescence micro spectroscopy spectra of single CH3NH3PbBr3 

perovskites. The left column shows the plots show luminescence versus illumination time with a 

488 nm laser (1.58 × 105 W/cm2) for CH3NH3PbBr3 perovskites synthesized using Scheme 2. 

The samples are: (a) unwashed sample, (b) washed sample, (c) unwashed with excess precursor, 

and (d) washed with excess precursor sample.   The right column shows the average max versus 

illumination time (n=3). Any deviations in max are less than 4 nm, and can be explained as 

measurement uncertainty (e.g., minor changes to the focus). 

 

 



www.manaraa.com

24 

 

Hu et al. measured no shifts in the emission λmax for CsPbI3 nanocrystals for more than 

240 seconds when excited using a pulsed laser with an average power between 2 and 10 nW.58 

They only reported spectra for two nanocrystals, so it is not possible to determine if this behavior 

is representative of all nanocrystals in their sample. Nine of the CH3NH3PbI3 nanocrystals we 

measured exhibited similar stable luminescence behavior while three showed a shift in λmax as 

much as 79 nm. Eight of the CH3NH3PbBr3 nanocrystals we measured exhibited stable 

luminescence behavior while four showed a shift in λmax as much as 8 nm. Rainò et al. also 

observed a shift in the emission λmax  in mixed halide CsPb(Br/Cl)3 nanocrystals from (224  to 

224.2 nm).59 

4. Conclusion 

In order to be useful in a variety of applications, nanocrystalline perovskites need to be 

photostable. The non-optimized organometal halide perovskites show shifts in luminescence λmax 

and exhibit multiple luminescence peaks when excess alkylammonium precursor is used. The 

optimized synthetic method produces nanocrystalline methylammonium lead halide particles that 

are photostable over at least 4 minutes of focused illumination. The mechanism for the improved 

photostability is likely to be reduced surface traps when low precursor ratios are utilized. Similar 

synthetic methods may increase the photostability of related perovskites. This work reports on 

the photostability of perovskites containing a single halide. In the case of mixed-halide 

perovskite nanocrystals, where domains of heterogeneous halide compositions may exist, the 

photostability is more complicated.  For example, our initial investigation has shown that 

CH3NH3Pb(Br0.2I0.8)3 nanocrystalline perovskites exhibit an abrupt shift in max from 630 nm to 

750 nm after a few seconds of illumination followed by a constant max with additional 

illumination (Fig S4). Under the same experimental and measurements conditions, single-halide 
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perovskites exhibit stable max as reported in this work. Thus, the continued study of mixed-

halide perovskites should be pursued.  
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Chapter 2 Supplemental Information 

 

Figure S2.1. TEM image of nanocrystalline CH3NH3PbBr3 perovskites showing sheet 

morphology.  L = 164 ± 170 nm. 
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Figure S2.2.  Time-correlated luminescence micro spectroscopy spectra of single CH3NH3PbI3 

perovskites. The plots show luminescence versus illumination time of 3 individual nanocrystals 

with a 532-nm laser (1.58 × 105 W/cm2) for CH3NH3PbI3 perovskites synthesized using Scheme 

2. The samples are: (column A) unwashed sample, (column B) washed sample, (column C) 

unwashed with excess precursor, and (Column D) washed with excess precursor sample. 

 
 

Figure S2.3. Time-correlated luminescence micro spectroscopy spectra of single CH3NH3PbBr3 

perovskites. The plots show luminescence versus illumination time of 3 individual nanocrystals 

with a 532-nm laser (1.58 × 105 W/cm2) for CH3NH3PbBr3 perovskites synthesized using 

Scheme 2. The samples are: (column A) unwashed sample, (column B) washed sample, (column 

C) unwashed with excess precursor, and (Column D) washed with excess precursor sample. 
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Figure S2.4. Time-correlated luminescence micro spectroscopy spectra of single (a) 

CH3NH3Pb(I0.8Br0.2)3 and (b) CH3NH3PbI3 perovskite nanocrystals versus time.  The 532-nm 

continuous-wave laser illumination was blocked for the first 2 seconds of data collection to 

ensure that fast photophysical events were captured in the data recording. 
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CHAPTER 3.  PHOTOPHYSICAL PROPERTIES OF WAVELENGTH-TUNABLE 

METHYLAMMONIUM LEAD HALIDE PEROVSKITE NANOCRYSTALS 

Modified from a manuscript published in Journal of Material Chemistry C, RSC (2016); 

reproduced with permission. 

Daniel J. Freppon1,2, Long Men1,2, Sadie J. Burkhow1,2, Jacob W. Petrich1,2, Javier Vela1,2, Emily 

A. Smith1,2,* 

1Department of Chemistry, Iowa State University, and 2Ames Laboratory, Ames, Iowa 50011 

*Corresponding Authors email: esmith1@iastate.edu, vela@iastate.edu 

Abstract 

We present the time-correlated luminescence of isolated nanocrystals of five 

methylammonium lead mixed-halide perovskite compositions (CH3NH3PbBr3-xIx) that were 

synthesized with varying iodide and bromide anion loading.  All analyzed nanocrystals had a 

spherical morphology with diameters in the range of 2 to 32 nm.  The luminescence maxima of 

CH3NH3PbBr3-xIx nanocrystals were tuned to wavelengths ranging between 498 and 740 nm by 

varying the halide loading.  Both CH3NH3PbI3 and CH3NH3PbBr3 nanocrystals exhibited no 

luminescence intermittency for more than 90% of the 250 s analysis time, as defined by a 

luminescence intensity three standard deviations above the background.  The mixed halide 

CH3NH3PbBr0.75I0.25, CH3NH3PbBr0.50I0.50, and CH3NH3PbBr0.25I0.75 nanocrystals exhibited 

luminescence intermittency in 18%, 4% and 26% of the nanocrystals, respectively.  Irrespective of 

luminescence intermittency, luminescence intensities were classified for each nanocrystal as: (a) 

constant, (b) multimodal, (c) photo brightening, and (d) photobleaching.  Based on their photo 

physics, the CH3NH3PbBr3-xIx nanocrystals can be expected to be useful in a wide-range of 

mailto:vela@iastate.edu
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applications where low and non-intermittent luminescence is desirable, for example as imaging 

probes and in films for energy conversion devices. 

3.1 Introduction 

Luminescent semiconductors are used in a variety of applications from microscopy 

probes1-4 to thin film energy capture and conversion devices.5-19 There is increasing interest in 

methylammonium lead halide perovskite (CH3NH3PbX3, X= halide) materials due to their low 

cost, broad absorption as well as their charge transport diffusion lengths that range from ~100 

nm to greater than 175 µm.20-24  In energy capture and conversion films, large exciton diffusion 

lengths remove the need for a transport layer in perovskite-based solar cells, thus simplifying the 

device architecture.  Single-crystalline nanocrystals, as opposed to polycrystalline films, could 

increase the efficiency of energy capture and conversion devices.  CH3NH3PbX3 nanocrystals are 

also being evaluated for use in light emitting diodes,25 and as lasing materials.26 

 Organometal halide perovskites do exhibit photostability issues.27,28  Specifically, 

perovskites degrade upon exposure to light over time.29,30  Further, Matsumoto et al. and 

Manshor et al. both report noticeable degradation of CH3NH3PbI3 to PbI2 when exposed to both 

light and humidity, but claim it remains stable when exposed to photon dose only.31,32  

Superoxide (O2-), generated from photoreaction of perovskites and oxygen, can also accelerate 

the degradation process to PbI2, I2 and CH3NH2.
33  The mechanism of photo degradation is still 

under debate, so it is important to study luminescence intermittency to better understand the 

photo-physics and phot-chemistry of perovskites. 

 When illuminated with visible light, many types of semiconductor materials show 

luminescence intermittency (i.e., blinking), a luminescence intensity that drops below the 

background or other threshold intensity.34-48  In addition to the energy capture and conversion 
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applications outlined above, there are many uses for non-intermittent, photostable, as well as 

tunable nanocrystals.  For example, as imaging probes the nanocrystal absorption and emission 

wavelengths should match wavelength criteria for the optical setup, so tunability is 

advantageous.  Tuning the luminescence wavelength of CsPbX3
49-51 as well as CH3NH3PbX3

52-55 

perovskite nanocrystals across the visible spectrum has been reported. 

 The photostability of CH3NH3PbX3 nanocrystals and films has been studied by Zhu et 

al.45 and Yuan et al.56 CH3NH3PbBr3 nanocrystals have been shown to degrade under an intense 

electron beam used in transmission electron microscopy.45  Laser illumination with 500 W/cm2 

was shown to cause photodamage to CH3NH3PbI3 films within several seconds, leading to a 

decrease in luminescence.56  Whereas, little photobleaching (i.e., decreasing luminescence) or 

photo brightening (i.e., increasing luminescence) was observed for CH3NH3PbI3 nanocrystals 

with wire, rod, and dot morphologies using mercury lamp illumination.45 

 In addition to photostability, luminescence intermittency has also been reported for 

CH3NH3PbX3 materials, 19,41,42,45,46,112,114 although the mechanism is still under debate.34-35, 38-39 

One reported mechanism of luminescence intermittency in a dense CH3NH3PbBr3 nanocrystal 

film is non-radiative Auger-like recombination of electrons and holes due to the accumulation of 

charge.42  In closely packed nanocrystals, charge accumulates at the surface and nanocrystal 

interface leading to intermittency; whereas, no intermittency is measured for well-dispersed 

nanocrystals.  On the other hand, Tachikawa et al. report intermittency in single CH3NH3PbBr3 

nanocrystals and postulate it is the result of charge trapping by surface Pb sites reducing the 

probability of a recombination event.46  They estimate 1 to 4 trap sites per 10 to 50-nm 

nanocrystal.  The halide composition affects the trap density; an order of magnitude lower trap 

site density is measured in CH3NH3PbI3 films grown in the presence of chloride compared to 
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films in the absence of chloride.57  In a CH3NH3PbI3 film, a deep trap state 0.16 eV above the 

valence band has been measured, and calculations show this trap might arise from iodine 

defects.58  

 Zheng et al. report the differences in bulk crystals and nanocrystals of CH3NH3PbBr3.
59

 

In bulk CH3NH3PbBr3, filling of trap sites is dependent on the photon density, and luminescence 

lifetimes increase with higher photon densities.  Compared to bulk, the luminescence lifetime of 

CH3NH3PbBr3 nanocrystals is not as dependent on photon densities; 30% of the excitation 

photons undergo trap-free recombination; trap states are more likely to be present on the surface 

than in the volume of the crystal; and trap lifetimes can be short.  Tian et al. have shown that 

light illumination removes traps leading to photo brightening in CH3NH3PbI3 films, and that the 

size of CH3NH3PbI3 crystallites (nanometers to microns) within the film has an effect on the rate 

of photo brightening.60 

 Here, we report the data from three luminescence techniques used to measure the photo 

physics of CH3NH3PbBr3-xIx nanocrystals to gain a fundamental understanding of how 

composition affects their luminescence and, thus, their continued and potential usability in 

energy conversion and imaging applications.  Ensemble luminescence measurements show the 

nanocrystal emission wavelengths are tunable across the visible wavelength region by varying 

the ratio of iodide and bromide salts in the synthetic loading.  Due to heterogeneous crystal 

formation, individual nanocrystal photophysical properties vary with the type and number of 

defect and trap sites.  Nanocrystal microscopy measures the luminescence intensity over time to 

reveal the temporal dynamics (e.g., intermittency, flickering) as well as heterogeneity in the 

photophysical properties.  Finally, nanocrystal micro spectroscopy enables the full luminescence 
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spectrum of isolated nanocrystals to be collected in order to monitor the stability of the emission 

peak over time. 

3.2 Experimental 

3.2.1 Materials  

Lead(II) iodide (PbI2, 99%), lead(II) bromide (PbBr2, ≥98%), methylamine (CH3NH2, 33 

wt% in ethanol), N,N-dimethylformamide (DMF, 99.8%, anhydrous) and n-octylamine 

(CH3(CH2)7NH2, 99%) were purchased from Sigma-Aldrich; hydroiodic acid (ACS, 55-58%) 

and hydrobromic acid (ACS, 47.0-49.0%) from Alfa-Aesar; acetonitrile (99.9%) and toluene 

(99.9%) from Fisher Scientific.  All chemicals were used as received. 

3.2.2 Synthesis of Methylammonium Lead (II) Mixed-halide Nanocrystals 

 Precursor solutions. Alkylammonium halides were prepared by a slightly modified 

literature procedure.53  Briefly, hydroiodic acid (10 mL, 0.075 mol) or hydrobromic acid (8.6 

mL, 0.075 mol) was added to a solution of excess methylamine (24 mL, 0.19 mol) or n-

octylamine (32 mL, 0.19 mol) in ethanol (100 mL) at 0 °C, and the mixture stirred at 0 °C for 2 h. 

The sample was concentrated under vacuum, first in a rotary evaporator at 70 °C, and then under 

dynamic vacuum at 60 °C for 12 h.  The remaining solid was recrystallized from ethanol.  Br 

Solution.  PbBr2 (2.9 mg, 0.008 mmol), CH3NH3Br (1.3 mg, 0.012 mmol) and CH3(CH2)7NH3Br 

(2.5 mg, 0.012 mmol) were dissolved in a mixture of acetonitrile (20 mL) and DMF (0.2 mL).  I 

Solution.  PbI2 (3.7 mg, 0.008 mmol), CH3NH3I (1.9 mg, 0.012 mmol) and CH3(CH2)7NH3I (3.1 

mg, 0.012 mmol) were dissolved in a mixture of acetonitrile (20 mL) and DMF (0.2 mL).  

CH3NH3Pb (BrxI1-x)3 nanocrystals.  Portions of Br and I solutions were mixed according to the 

different desired halide loadings to a total volume of 4 mL, followed by the rapid addition of 

toluene (15 mL) while stirring.  After 24 h stirring at room temperature, solids were isolated by 
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centrifugation (5 min at 4500 rpm) and washed with toluene (5 mL).  Solids were suspended into 

10 mL toluene which resulted in a nanocrystal concentration of approximately 1 mM. 

3.3.3 Nanocrystal Ensemble Characterization   

XRD was measured using Cu Kα radiation on a Rigaku Ultima diffractometer. Solution 

extinction (absorption plus scattering) spectra were measured with a photodiode array Agilent 

8453 UV-Vis spectrophotometer.  Steady-state PL spectra were measured using a Horiba-Jobin 

Yvon Nanolog scanning spectrofluorometer.  Relative PL quantum yields (QYs) were measured 

following literature procedures, using either Rhodamine 590 or Rhodamine 640 dye as a 

standard.61 Absorption and PL emission spectra were measured as duplicates and the average 

QYs were recorded. 

3.3.4 Nanocrystal Luminescence Microscopy   

CH3NH3PbBr3-xIx nanocrystals prepared from precursor solutions using the method stated 

earlier were diluted to a tenth (/10) in toluene (~0.3 mM, 50 μL) and sonicated for 90 minutes 

before drop casting onto a glass microscope coverslip (Carlson Scientific, Peotone, IL, USA).  

Nanocrystal luminescence microscopy was performed using an upright microscope (Nikon 

Eclipse 80i, Melville, NY, USA).  A mercury lamp was used for excitation (XCite 120 PC, 

EXFO Photonic Solutions Inc., Quebec City, Canada).  Excitation and emission filters were from 

Omega Optical (Brattleboro, VT, USA), unless noted otherwise:  500 ± 5 nm excitation and 535 

± 7.5 nm emission filters were used for the CH3NH3PbBr3, CH3NH3Pb(Br0.75I0.25)3, and 

CH3NH3Pb(Br0.50I0.50)3 samples;  500 ± 5 nm excitation and 615 ± 15 nm emission filters were 

used for the CH3NH3Pb(Br0.25I0.75)3 sample;  510 ± 5 nm excitation and 730 ± 40 nm emission 

filters (Semrock, Inc., Lake Forest, IL, USA) were used for the CH3NH3PbI3 sample.  A 100× 

PlanApo, 1.49 numerical aperture oil-immersion objective was used and photoluminescence (PL) 
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images were collected in the epi-direction using a charged-coupled device (CCD) camera 

(Photometrics Evolve, Tucson, AZ, USA) with a 250 millisecond exposure time and zero gain.  

Each PL movie consists of 1000 images/frames collected sequentially for a total analysis time of 

250 seconds.  The signal-to-noise ratio was at least 2 at the start of each movie, and a diffraction-

limited point spread function was measured for each analyzed nanocrystal. 

3.3.5 Threshold Calculation   

ImageJ was used to analyze the PL movies.  For each nanocrystal analyzed, the 

nanocrystal’s luminescence intensity and a background value were quantified in each of the 1000 

frames using the Z-axis Profile function in ImageJ.  The most intense pixel for the spheroid 

nanocrystals was used to plot the nanocrystal luminescence intensity over the entire 1000 frames 

(i.e., over time).  The background in each frame was measured approximately 8 pixels away 

from the center of each nanocrystal.  The average background value (μbg) and background 

standard deviation (σbg) were calculated across all 1000 frames, and was used to calculate a 

threshold:  Threshold = μbg + 3σbg.  Nanocrystals were considered intermittent in luminescence if 

their intensity fell below the threshold for more than 25 seconds over the entire movie (i.e., 10% 

of the collection time). 

3.3.6 Nanocrystal Microspectroscopy   

The suspended CH3NH3Pb(Br0.75I0.25)3 nanocrystals prepared from precursor were diluted 

to a tenth (/10) in toluene (~0.3 mM, 50 μL) and sonicated for 60 min before drop casting onto a 

glass microscope coverslip (Carlson Scientific, Peotone, IL).  A lab-built optical microscope 

based on a DM IRBE platform (Leica, Wetzlar, Germany) with 532-nm laser excitation 

(Sapphire SF 532 nm, Coherent, Santa Clara, CA, USA) was used to collect emission spectra as 

a function of illumination time.  A 100× HCX PL APO, 1.49 numerical aperture oil-immersion 
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objective (Leica) was used to achieve a laser spot with a diameter of 440 nm.  The excitation 

power density at the sample was 1 × 105 W/cm2.  Photoluminescence was collected from the epi-

direction and focused onto a HoloSpec f/1.8i spectrograph (Kaiser Optical Systems, Ann Arbor, 

MI, USA) equipped with a broad range grating (HFG-650, Kaiser Optical Systems) and then 

directed to a CCD (Newton 940, Andor Technology, Belfast, UK).  A series of 2500 spectra 

were collected for 0.1 second each.  Spectra were then analyzed using IGOR Pro 6.34 batch fit 

(Wavemetrics, Lake Oswego, OR) and 3D images of the fits shown in Figure 5 were plotted in 

Matlab 2016a (Mathworks, Natick, MA). 

3.4 Results and Discussion 

Five CH3NH3PbBr3-xIx nanocrystal compositions were prepared with X = 0, 0.75, 1.50, 

2.25 and 3.  Throughout, the presented formulas refer to the synthetic loading not a measured 

nanocrystal composition.  All synthetic loadings produced primarily spherical nanocrystals, as 

shown by transmission electron microscopy (Fig. S3.1).  The XRD pattern shows a major peak at 

30.2 degrees for CH3NH3PbBr3 nanocrystals, which corresponds to a cubic crystal structure, and 

a peak at 28.7 for CH3NH3PbI3 nanocrystals, which corresponds to a tetragonal crystal structure 

(Fig. S3.2). The mixed halide perovskites we studied are nanocrystalline. To control particle size, 

we used octyl ammonium halides (CH3(CH2)7NH3X) as surfactants, which we have shown 

passivate the surface and terminate/truncate further crystal growth. The experimental XRD 

patterns of CH3NH3PbI3 and CH3NH3PbBr3 indicate the nanocrystals grow mainly along the 

[110] direction.45  This preferred orientation is the main reason behind the differences observed 

between the experimental and standard XRD patterns, which were collected from bulk single 

crystals.  
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According to the experimental patterns of CH3NH3PbBr3-xIx (x=0.25, 0.50, 0.75), all 

three crystal structures are cubic, because only one diffraction peak is shown around 15 2θ 

degree, which is corresponding to (001) plane of cubic structure. Our observation is also 

consistent with Zhu et al.45 

The CH3NH3PbBr3-xIx nanocrystals absorbed a broad range of visible wavelengths (Fig. 

3.1).  The luminescence spectra show a range in their wavelength of maximum emission with 

halide loading (Fig.3.1).  As the iodide content increased from 0 (CH3NH3PbBr3) to 100% 

(CH3NH3PbI3), the luminescence maximum shifted from 498 to 740 nm.  The shift in 

luminescence maximum is not linear with halide loading (Fig.3.2), which is consistent with 

previous reports.52,62 

 
 

Fig 3.1.  (Top) Extinction (absorption plus scattering) and (bottom) normalized emission with 

375 nm excitation spectra of CH3NH3PbBr3 (purple), CH3NH3Pb (Br0.75I0.25)3 (blue), CH3NH3Pb 

(Br0.50I0.50)3 (green), CH3NH3Pb (Br0.25I0.75)3 (orange), CH3NH3PbI3 (red).  Extinction and 

emission spectra were collected in toluene as the solvent. 
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 The luminescence intensity as a function of time was analyzed for up to 50 nanocrystals 

from each halide loading.  The CH3NH3(Br0.25I0.75)3 nanocrystals were more dilute relative to the 

other compositions over replicate syntheses and the same sample preparation method only 

allowed 39 nanocrystals to be measured.  An average luminescence intensity across the 250 

second analysis time was calculated for each nanocrystal; histograms of the background 

subtracted values are shown in Fig. S3.3 for each halide loading.  The absolute values on the x-

axis cannot be compared across different compositions as the optical throughput of the 

instrument varies with wavelength (e.g., filter bandwidth, etc.).  The shapes of the distributions, 

however, can be compared.  The mixed halide compositions of CH3NH3Pb(Br0.75I0.25)3, 

CH3NH3Pb(Br0.50I0.50)3, and CH3NH3Pb(Br0.25I0.75)3 had more outliers with intensities 13 to 230× 

higher than the intensity with the highest frequency compared to the single halide CH3NH3PbBr3 

and CH3NH3PbI3 nanocrystals. 

 
 

Fig 3.2.  Emission maximum wavelength versus iodide loading for the (0%) CH3NH3PbBr3, 

(25%) CH3NH3Pb (Br0.75I0.25)3, (50%) CH3NH3Pb (Br0.50I0.50)3, (75%) CH3NH3Pb (Br0.25I0.75)3, 

and (100%) CH3NH3PbI3 nanocrystals.  The third-order polynomial fit line is shown in red. The 

equation for the best fit of the maximum emission wavelength (max) versus percent iodide 

loading (x) is: 𝜆max  = −9 × 10−5𝑥3 + 0.04𝑥2 − 𝑥 + 501.   The R2 value for the fit is 0.99.  

 

 



www.manaraa.com

42 

 

 The single halide nanocrystals exhibit no luminescence intermittency as defined by a 

luminescence intensity above the calculated threshold for distinguishing luminescence from the 

background more than 90% of the analysis time (Table 3.1).  The percentage of CH3NH3Pb 

(Br0.75I0.25)3, CH3NH3Pb (Br0.50I0.50)3, and CH3NH3Pb (Br0.25I0.75)3 nanocrystals that exhibit 

luminescence intermittency is 18, 4, and 26%, respectively.  We hypothesize that the fraction of 

mixed halide nanocrystals that exhibit intermittency due to crystal defects or trap states.  The 

single halide perovskites, CH3NH3PbI3 and CH3NH3PbBr3, have quantum yields of 1.5% and 

44% respectively. These quantum yields are higher than the mixed halide perovskite 

nanocrystals (0.02 to 1.3%), which is consistent with the hypothesis that increased crystal defects 

or trap states are responsible for blinking in the mixed halide perovskites.  It is likely that I or Br 

incorporation into a crystal is unlikely to form a homogenous lattice when the synthesis has a 

higher loading of one halide compared to the other.  Compared to CH3NH3PbI3, CH3NH3PbBr3 

perovskites have a lower relative reaction enthalpy, providing to more stability in thin films.63 

Additional work to probe this issue is under way.  When electrons become trapped, luminescent 

recombination of excitons cannot occur, providing periods of no measured luminescence.  

Further, this leads to the assumption that functional trap states are absent in the single halide 

nanocrystals. 
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Table 3.1. Percentage of nanocrystals within each composition that are above the calculated 

threshold over 90% of the analysis time (i.e., “ON”) and the percentage of time the nanocrystals 

are above the threshold. 

a The nanocrystals are in an “ON” state if the luminescence intensity is above the calculated 

threshold at least 90% of the analysis time. 

b Based on a total time of 250 seconds × number of nanocrystals analyzed. 

 

Sample Number of 

Nanocrystals 

Analyzed 

Percentage 

Nanocrystals 
“ON”a 

Percentage 

Time Above 

Thresholdb 

CH3NH3PbBr3 50 100 100 

CH3NH3Pb(Br0.75I0.25)3 50 82 93 

CH3NH3Pb(Br0.50I0.50)3 50 96 99 

CH3NH3Pb(Br0.25I0.75)3 39 74 89 

CH3NH3PbI3 50 100 100 
 

  

In addition to the percentage of nanocrystals that exhibit intermittency, it is also useful to 

consider the percentage of time the nanocrystals were above the threshold over the total analysis 

time (Table 3.1).  The intensities of the CH3NH3PbBr3 and CH3NH3PbI3 nanocrystals are always 

above the threshold over the entire 208 minutes (i.e., 50 nanocrystals analyzed for 250 seconds 

each).  For the intermediate halide loadings, the percentage of non-intermittent nanocrystals and 

the percentage of the analysis time the nanocrystals are above the threshold are correlated.  The 

latter, however, is always higher than the former.  For example, 74% of the CH3NH3Pb 

(Br0.25I0.75)3 nanocrystals are not intermittent and are above the threshold 89% of the analysis 

time. 

 The luminescence signal over time was categorized into four different luminescence 

behaviors irrespective of the threshold or intermittency (Table 3.2).  The behaviors are: (a) 

constant intensity, (b) multimodal intensity, (c) photo brightening, and (d) photobleaching.  In 

order to be classified as constant luminescence intensity, shown in Fig. 3.3a, the slope of the line 

connecting the intensity at 0 seconds and 250 seconds was between -0.2 and 0.2 s-1.  The small 

fluctuations in intensity of a nanocrystal classified as constant luminescence are due to 
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instrument noise; this produces an intensity histogram with a Gaussian distribution (Fig. 3.3a').    

The CH3NH3Pb (Br0.75I0.25)3 and CH3NH3Pb (Br0.50I0.50)3 nanocrystals were the only 

compositions to exhibit type a constant intensity with populations of 28% for both compositions 

(Table 3.2).  

 

Table 3.2. Number of nanocrystals analyzed for each halide loading and percentage that display 

type a, b, c, and d photoluminescence as defined in the text. 

 

 

Sample 

Number of 

Nanocrystals 

Analyzed 

Type a: 

Constant  

Intensity 

Type b: 

Multimodal 

Intensity 

Profile 

Type c: 

Photo-

brightening 

Type d: 

Photo-

bleaching 

CH3NH3PbBr3 50 0% 70% 4% 26% 

CH3NH3Pb(Br0.75I0.25)3 50 28% 38% 22% 12% 

CH3NH3Pb(Br0.50I0.50)3 50 28% 18% 8% 46% 

CH3NH3Pb(Br0.25I0.75)3 39 0% 0% 5% 95% 

CH3NH3PbI3 50 0% 18% 8% 74% 

 

  

If the intensity of a nanocrystal varied between two or three relatively constant values for 

a duration of at least 10 seconds with the transition between intensities occurring within 500 

millisecond (i.e., two times the acquisition time), this is classified as type b multimodal behavior, 

shown in Fig. 3.3b.  The resulting intensity histogram is either a bimodal or trimodal distribution 

(Fig. 3.3b').  The number of nanocrystals that have a multimodal intensity profile decreased with 

the amount of bromide loading from CH3NH3PbBr3 to CH3NH3Pb (Br0.25I0.75).  The CH3NH3PbI3 

nanocrystals do not fit this trend with 18% of nanocrystals exhibiting this behavior.  Across all 

nanocrystal compositions, 72 exhibited multimodal behavior, and this was the second most 

common behavior.  Eight of the 72 total where trimodal (only found in the CH3NH3PbBr3 and 

CH3NH3Pb (Br0.75I0.25)3 compositions) and 64 were bimodal.  A possible mechanism for type b 
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photo physics is considered:  Given the nanocrystals are smaller than the diffraction limit of 

light, it is possible that a bimodal luminescence intensity is from nanocrystal dimers or 

aggregates.  Considering a bimodal distribution, the most common type b behavior, and a 

possible nanocrystal dimer, the high luminescence state would represent times when both 

nanocrystals are emitting; whereas, the low intensity state would represent times when only one 

nanocrystal is emitting.  Statistically, there is a possibility that both nanocrystals are not emitting, 

and the intensity would drop below the threshold.  This possibility increases as the duration of 

the low intensity state increases; however, an intensity below the threshold is never measured in 

this population.  One may argue that the lower intensity state is one where the nanocrystal is not 

luminescent, and that an incorrect threshold has been applied.  However, the image inset in Fig. 

3.3b clearly show that the low intensity state is higher than the background. A low intensity, or 

gray state, has been reported for quantum dots, including ZnS capped CdSe64 and CdS capped 

CdSe.65,66 The emitting low intensity state in CH3NH3PbBr3-xIx nanocrystals may be a gray state, 

although the mechanism for the gray state may be unique and requires further study. 
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Fig 3.3.  Representative luminescence intensity versus time graphs for CH3NH3Pb (Br0.75I0.25)3 

nanocrystals. The dotted red line is the threshold for distinguishing nanocrystal luminescence 

from the background. The panels represent four of the photophysical properties measured for all 

the perovskite compositions. The time-correlated luminescence intensity is found on the left.  

Histograms of the corresponding intensities are found on the right.  Type (a) is representative of 

nanocrystals that only show fluctuations in luminescence intensity due to instrument noise.  Type 

(b) is representative of nanocrystals that exhibit a multimodal luminescence intensity profile, in 

this case being bimodal, a low intensity and a high intensity or vice versa.  Type (c) is 

representative of nanocrystals with luminescence intensities that photo brighten over time (a 

slope greater than 0.2 s-1).  Type (d) is representative of nanocrystals with luminescence 

intensities that photo bleach over time (a slope smaller than -0.2 s-1).  Figures on the right show 

the intensity histograms for all 250 seconds.  Each histogram corresponds to the similar letter 

(e.g. a’ corresponds to a).  The insets show the image at selected time points, as noted by the 

arrow. In all cases, the images show a nanocrystal intensity that can be differentiated from the 

background. The scale bar in each image is 2 µm and the acquisition time is 250 millisecond.  
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 In up to 22% of the population, the luminescence intensity of a nanocrystal increased 

over the analysis time. If the slope of the intensity between the data points at time 0 seconds and 

250 seconds was greater than 0.2 s-1, then the nanocrystal was photo brightening, shown in Fig. 

3.3c.  Photo brightening results in an intensity histogram with an asymmetric distribution (Figure 

3c').  In the case of Fig. 3.3c, and whenever there is photo brightening, a skew does exist towards 

higher intensities.  Photo brightening has been reported in CH3NH3PbBr3 nanocrystals and 

CH3NH3PbI3 films by Tachikawa et al. and deQuilettes et al., respectively.46,67 One mechanism 

reported for photo brightening is a photoinduced trap reduction caused by the movement of 

halides when illuminated with light.  As the halides are transported about the nanocrystalline 

lattice, vacancies that make up trap sites are filled.  Considering all nanocrystal compositions as 

an aggregate, this is the least common behavior. 

 Each nanocrystal composition produced a population where the luminescence intensity of 

a nanocrystal decreased over the analysis time.  If the slope of the intensity between the data 

points at time 0 seconds and 250 seconds was less than -0.2 s-1, then the nanocrystal was 

considered to be photobleaching, shown in Fig. 3.3d.  Photobleaching generally results in an 

intensity histogram that skews to lower values (Fig. 3.3d').  Photobleaching was most common 

(74-95%) in the nanocrystals containing high amounts of iodide (i.e., CH3NH3Pb (Br0.25I0.75)3 

and CH3NH3PbI3).  We hypothesize that in cases of photobleaching, the nanocrystal lattice 

begins to decompose leading to higher non-radiative recombination events, which has also been 

observed in CsPbX3 nanocrystals43 and CdSe/ZnS quantum dots.68 A small number of 

nanocrystals exhibited photobleaching as well as short periods of lower intensity up to 10 s in 

duration (i.e., below the 50 seconds used to categorize a nanocrystal as exhibiting a bimodal 



www.manaraa.com

48 

 

distribution).  Each nanocrystal was analyzed for 250 seconds; it is possible that the percentage 

of nanocrystals with type d photobleaching behavior increases as the analysis time increases. 

 Flickering is defined here as less than 500 millisecond (i.e., two times the acquisition 

time) periods of a drop in luminescence intensity.  Flickering is observed in types b, c, and d 

luminescence behaviors.  Examples of flickering are shown in Fig. 3.3b and d. In some instances 

of flickering, the luminescence intensity goes below the threshold, which represent brief 

intermittent events.  For the events that do not go below the threshold, a faster acquisition rate 

may reveal whether these events represent intermittent events.  A faster acquisition time of 20 

millisecond was used to measure the time correlated luminescence intensity of all nanocrystal 

compositions; results for one composition are shown in Fig. 3.4 and for the other compositions in 

Fig. S3.4.  Most of the flickering measured with a 20-millisecond acquisition time remain above 

the threshold, revealing a mechanism faster than 20 milliseconds is responsible for most of these 

events. 

 
 

Fig 3.4.  Representative luminescence intensity versus time graphs for CH3NH3PbBr3 

nanocrystals. The acquisition time is 20 millisecond, collected over 10 seconds.  The dotted red 

line is the threshold for distinguishing nanocrystal luminescence from the background.   
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 In the nanocrystal luminescence microscopy experiments described above, increasing, 

decreasing or flickering luminescence could be explained by shifting luminescence spectra, 

which has been measured in similar nanocrystals.69  If the luminescence shifts partially, or 

completely, outside the wavelength range of the filters used to collect the signal, then the 

luminescence intensity could increase, decrease, or disappear. In order to test for this, the 

emission spectrum of isolated CH3NH3PbI3 nanocrystals was measured over 250 seconds under 1 

× 105 W/cm2 laser irradiance (Fig. 3.5).  The emission maximum remained constant at 775 nm 

under continuous illumination with a 100 millisecond acquisition time.  The emission does not 

shift outside the wavelength region of the filters used to collect the luminescence intensity versus 

time data.  This indicates that the blinking or other varying luminescence intensity states 

measured for the CH3NH3PbI3 nanocrystals (Table 3.1) is not the result of shifting luminescence 

spectra. The instrument setup does not allow the measurement of the other nanocrystal 

compositions.  Finally, this experiment shows that 50% of the nanocrystal exhibit photo 

brightening and 50% photobleaching under high irradiance, and overall better photostability than 

many reported in the literature for similar materials.43,70 
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Fig 3.5.  Luminescence spectra of CH3NH3PbI3 nanocrystals over time. Each panel represents a 

different nanocrystal. The luminescence maximum is constant over time at 775 nm. (This is 

shifted relative to the ensemble solution data shown in Fig. 3.1). The excitation wavelength is 

532 nm; the acquisition time is 0.1 seconds. 

 

3.5 Conclusion 

 The nanocrystal luminescence analysis of a series of methylammonium lead halide 

nanocrystals has been reported. The wavelength of maximum luminescence was tunable within 

the range of 498-740 nm by controlling the bromide and iodide loading during nanocrystal 

synthesis. The CH3NH3PbI3 and CH3NH3PbBr3 nanocrystals exhibit no luminescence 

intermittency, while 82%, 96%, and 74% of the CH3NH3Pb (Br0.75I0.25)3, CH3NH3Pb (Br0.50I0.50)3, 

and CH3NH3Pb (Br0.25I0.75)3 nanocrystals exhibit no luminescence intermittency, respectively. 

The low percentage of nanocrystals which exhibited intermittency, along with relatively good 

photo stabilities at low (i.e., mercury lamp) and high (i.e., focused laser, up to 1 × 105 W/cm2) 

photon fluxes, and the emission tunability of the nanocrystals, this specific synthesis method can 
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provide hybrid perovskite nanocrystals which will be useful in a wide range of luminescence and 

microscopy techniques. 
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Chapter 3 Supplemental Information 

 

Transmission Electron Microscopy 

Transmission Electron Microscopy (TEM). TEM was conducted using a FEI Technai G2 

F20 field emission TEM operating at up to 200 kV with a point-to-point resolution of less than 

0.25 nm and a line-to-line resolution of less than 0.10 nm. Samples were prepared by placing 2 

or 3 drops of dilute toluene solutions onto carbon-coated copper grids.  

Size and Morphology Analysis. Particle dimensions were measured manually and with 

ImageJ. Typically, more than 100 particles were counted in each case. Uncertainties in all 

measurements are reported as standard deviations. 
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Figure S3.1.  TEM images of (a) CH3NH3PbBr3, (b) CH3NH3Pb (Br0.75I0.25)3, (c) CH3NH3Pb 

(Br0.50I0.50)3, (d) CH3NH3Pb (Br0.25I0.75)3, and (e) CH3NH3PbI3 nanocrystals. 

 

 

Figure S3.2.  X-ray diffraction (XRD) patterns of CH3NH3PbBr3, CH3NH3Pb (Br0.75I0.25)3, 

CH3NH3Pb (Br0.50I0.50)3, CH3NH3Pb (Br0.25I0.75)3, and CH3NH3PbI3 nanocrystals.  Also included 

are the standard XRD patterns for the cubic CH3NH3PbBr3 and tetragonal CH3NH3PbI3 crystal 

structures, respectively.  The various halide percentages stated in the formulas represent 

synthetic loading rather than a measured composition of the nanocrystals. 
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Figure S3.3.  Histograms of the average background subtracted nanocrystal luminescence 

intensity for the perovskite compositions: (a) CH3NH3PbBr3, (b) CH3NH3Pb (Br0.75I0.25)3, (c) 

CH3NH3Pb (Br0.50I0.50)3, (d) CH3NH3Pb (Br0.25I0.75)3, and (e) CH3NH3PbI3. Each histogram was 

generated to have 10 or 11 nanocrystals as a maximum frequency, so the bin size varies among 

each composition. A total of 50 nanocrystals were analyzed in all cases except (d), which had 39 

nanocrystals analyzed.   

 

 
 

Figure S3.4.  Representative luminescence intensity versus time graphs for (a) CH3NH3PbBr3, 

(b) CH3NH3Pb (Br0.75I0.25)3, (c) CH3NH3Pb (Br0.50I0.50)3, (d) CH3NH3Pb (Br0.25I0.75)3, and (e) 

CH3NH3PbI3 nanocrystals. The acquisition time is 20 ms, collected over 10 s.  The dotted red line is 

the threshold for distinguishing nanocrystal luminescence from the background. 
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Abstract 

The ability to produce large-scale, reversible structural changes in a variety of materials 

by photoexcitation of a wide variety of azobenzene derivatives has been recognized for almost 

two decades.  Because photoexcitation of trans-azobenzene produces the cis isomer in solution, 

it has generally been inferred that the macroscopic structural changes occurring in materials are 

also initiated by a similar large-amplitude, trans-to-cis isomerization.  This work provides the 

first demonstration that a trans-to-cis photoisomerization occurs in polycrystalline azobenzene 

(not a derivative) and is consistent with the previously suggested nature of the trigger in the 

photo actuated mechanisms of the materials in question.    It is also demonstrated that the 

transition occurs in the solid phase (not via a pre-melted phase):  under low irradiance, trans-to-

cis isomerization occurs in the solid; and the presence of the cis-isomer thus lowers the melting 

point of the sample, providing a liquid phase.  A variety of experimental techniques were 

employed, including X-ray diffraction measurements of polycrystalline azobenzene during 

exposure to laser irradiation and fluorescence measurements of the solid sample.  (Given the 
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difficulty of obtaining fluorescence spectra of azobenzene owing to the extremely low quantum 

yield, 10-6 to 10-7, our spectra represent one example of only a handful of fluorescence 

measurements of azobenzene and, to our knowledge, the first fluorescence spectra of the solid or 

melted solid.)  A practical consequence of this work is that it establishes trans-azobenzene as an 

easily obtainable and well-defined control for monitoring photoinduced structural changes in X-

ray diffraction experiments, using easily accessible laser wavelengths. 

4.1 Introduction 

 Photoinduced trans-to-cis isomerization has been an area of interest for decades not only 

because of its intrinsic importance as a fundamentally basic process in chemistry and biology but 

also for its utility in testing various theories of reaction dynamics.  More recently, such changes 

have been implicated in providing photoinduced mechanical transformations important for 

applications in nanotechnology.  The structure of azobenzene is related to that of stilbene 

(Scheme 1), which is one of the simplest and most studied examples of a system that undergoes 

an excited-state trans-to-cis isomerization.  Stilbene has been used in studies as diverse as 

modeling the isomerization in bacteriorhodopsin to testing the role of solvent friction in 

Kramers’ theory of barrier crossing.1-4 Azobenzene (Scheme 1) is a nitrogen-substituted analog 

of stilbene that also undergoes excited-state trans-to-cis isomerization, as was originally noted by 

Hartley.5,6 It has been the object of several fundamental photophysical studies and reviews.7-11  
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Scheme 4.1.  Structures of stilbene and azobenzene, both of which exhibit photoexcited trans-to-

cis isomerization.  In both cases, the cis form can return to the initial trans form either thermally 

or by photoexcitation.  The melting points of trans- and cis-stilbene are 125 °C and -5 °C,12  

respectively; of trans- and cis-azobenzene, 68 °C and 71 °C, respectively.13,14 

 
 More importantly for the purposes of this work are the observations that azobenzene 

derivatives can be used as a photo actuated switches and the proposals for their applications in 

nanoscale devices.15-25  Natanshon et al.20,21 showed that polymers containing azobenzene 

derivatives could be used for reversible optical storage.  Koshima et al. observed controlled and 

reversible mechanical motion of polycrystalline plates of a dimethyl amino derivative of trans-

azobenzene upon photoexcitation.26  Most recently, Bushuyev et al.27 extended the studies of 

Koshima et al.26 to single-crystal “needles” of fluorinated cis-azobenzenes.  In all these cases, it 

has been convincingly demonstrated that the mechanical motion of the films, plates, or needles 

has its origin in a photoinduced structural change of the azobenzene derivative.15,17-33 In order, 

however, fully to appreciate and to exploit this fascinating phenomenon of light-induced 

mechanical motion, it is necessary to understand clearly what the transition is and how it occurs 
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in situ, more specifically: to confirm that the transition is indeed a large-amplitude trans-to-cis 

isomerization and not a smaller structural change; and to determine conclusively whether the 

structural change occurs in the solid or in the liquid phase.   

4.2 Experimental 

4.2.1 Materials 

Trans-azobenzene was purchased from Matheson (96%), and from Sigma-Aldrich (98%).  

Trans-stilbene (96%) was obtained from Sigma-Aldrich.  Coumarin 153 was obtained from 

Exciton. 

4.2.2 Melting experiments with low irradiance 

Experiments to determine whether polycrystalline trans-azobenzene could be melted with 

low light levels were performed with an LED (Thorlab) providing 470-nm radiation.  A 

thermocouple (Omega Engineering Inc.) in contact with the crystals registered the temperature at 

which the crystals melted.  The power of the LED with monitored with a power meter (Newport 

Corporation).    

4.2.3 In-situ powder X-ray diffraction (XRD) experiments under laser irradiation 

XRD data were obtained with a Rigaku Ultima IV (40 kV, 44 mA, The Woodlands, TX) 

diffractometer using Cu-Kα radiation and a scan speed of 2 degree/min.  A metal plate was 

substituted for the lead glass at the front of the instrument.  A hole was cut at the center of the 

plate to enable laser irradiation of the sample.  Samples were ground to a fine powder in an agate 

mortar and transferred onto a “background-free” quartz sample holder.  While collecting XRD 

data, the samples were excited with 532-nm or 355-nm pulses from a Nd-YAG laser (20 Hz, 5 

ns; Surelite II, Continuum, San Jose, CA).  At the sample, the laser beam was an ellipse with 

minor and major axes of 9 and 13 mm (i.e., having an area of 92 mm2).  The irradiances were 8.5 
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× 105 W/cm2 and 1.4 × 105 W/cm2, respectively.  These values represent the pulse energy divided 

by the temporal duration of the pulse divided by the beam area at the sample.  These irradiances 

are orders of magnitude larger than those required to melt trans-azobenzene with 470-nm 

radiation.  This is in part owing to the smaller extinction coefficient at 532 nm with respect that 

at 470 nm (Fig. 4.1); but it also likely reflects the sensitivity of the X-ray experiment.  

 

Figure 4.1.  Steady-state absorption (dashed lines) and emission (solid lines) spectra of trans-

(black) and cis-azobenzene (red), obtained from a 43-mM sample in DMSO, reproduced from 

the work of  Satzger et al.7    Satzger et al. extracted the spectrum of the cis-isomer from 

experimental data containing a mixture of 30% cis- and 70% and trans-isomers.  The spectra are 

each fit to a sum of lognormals: 
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4.2.4 Fluorescence spectra of polycrystalline trans-azobenzene   

Two types of fluorescence experiments were performed.  In both types of experiments, 

irradiances significantly in excess of that required to observe melting in the sample were required 
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in order to obtain an observable signal.  The irradiances chosen for the fluorescence experiments 

were based on those required to observe significant structural changes in the X-ray experiments.  

In the first type of fluorescence experiment, trans-azobenzene was melted and allowed to 

solidify on a glass slide to form a thick film (~1 mm).  The sample was excited (λex = 532 nm or 

355 nm) in a front-faced orientation by the same Nd-YAG laser that was used for the XRD 

measurements with the same beam area.  Fluorescence was collected by a CCD (I-Star, Andor 

Technology, Belfast, UK) camera fitted with a spectrograph.  For clarity, in the course of our 

discussion, we shall refer to this as the “pulsed, solid film” experiment. 

The second type of fluorescence experiment employed a lab-built optical microscope 

based on a DM IRBE platform (Leica, Wetzlar, Germany) with continuous-wave (cw) laser 

excitation at 532 nm (Sapphire SF 532 nm, Coherent, Santa Clara, CA, USA).  A 10×, 0.25 

numerical aperture objective (Leica) was used to achieve a laser spot with a diameter of 2.6 μm.  

As in the previous experiment, irradiances of ~105 W/cm2 were required.  Fluorescence was 

collected from the epi-direction and focused onto a HoloSpec f/1.8i spectrograph (Kaiser Optical 

Systems, Ann Arbor, MI, USA), equipped with a broad-range grating (HFG-650, Kaiser Optical 

Systems), and then directed to a CCD (Newton 940, Andor Technology, Belfast, UK).  The 

collection time for a single acquisition was 60 s.  This shall be referred to as the “cw, 

polycrystalline powder” experiment. 

4.2.5 Spectral analysis 

 Satzger et al.34 measured the fluorescence spectra of trans- and cis-azobenzene in liquid 

DMSO.  We found that each of their fluorescence spectra, reproduced in Fig. 4.1, could be well 

described by a sum of two lognormal functions.  (The lognormal is commonly used to model 

emission spectra of chromophores in the condensed phase because it adequately represents their 
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asymmetry.35)  As will be discussed below, this result motivated us to describe the fluorescence 

emission of the initially solid samples in terms of lognormals.  

4.3 Results 

4.3.1 Trans-azobenzene melts at low irradiances 

Polycrystalline trans-azobenzene was subjected to 470-nm radiation from an LED.  

Melting of the sample began after about 15 s with an irradiance of 240 mW/cm2, corresponding 

to a temperature of 50-54 0C.  The sample was predominately melted after 2-3 s with an 

irradiance of 280 mW/cm2, corresponding to a temperature of 54-57°C (Movie S4.1), which is 

lower than the melting point of trans-azobenzene (68 °C13,14). Thus suggests that the 

photoinduced trans-to-cis isomerization occurs in the solid phase and that it is followed by 

melting, as the presence of the newly-formed cis-isomer has now depressed the melting point of 

the sample.  The presence of the cis-isomer is clearly and reproducibly shown in the absorption 

spectrum of the material (dissolved in DMSO) before and after irradiation (Fig. 4.2).  As a 

control experiment, similar measurements were performed with coumarin 153 (melting point of 

164-168 0C36), which absorbs light strongly at 470 nm (ε470 =  5000 M-1 cm-1 37) but does not 

undergo any significant nonradiative photo processes.38 The coumarin sample was exposed for 

up to 2 min to a range of irradiances from 280 to 800 mW/cm2, over which range no melting was 

observed, suggesting that a temperature of 164-168 °C could not have been achieved in this 

range of irradiances, which exceeded that used to melt the trans-azobenzene.      
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Figure 4.2. Steady-state absorption of a trans-azobenzene sample dissolved in DMSO before 

(black) and after (red) melting, which is effected by 470-nm radiation. 

 

4.3.2 In-situ laser-XRD structural analysis 

The powder X-ray diffraction (XRD) of trans- and cis-azobenzene are presented in Fig. 

4.3.  Before laser irradiation, the experimental pattern of trans-azobenzene agrees well with that 

of the standard.  Intensity differences between the two are attributed to preferred orientations 

within the crystalline solid.  With λex = 355 nm and an irradiance of 1.4 × 105 W/cm2, the 

diffraction peaks at 16.1 and 19.9° (highlighted in green) are significantly enhanced.  These two 

peaks match those of the cis-azobenzene standard, suggesting that a significant fraction of the 

trans-azobenzene population photo isomerizes to the cis form.  On the other hand, the diffraction 

pattern obtained with λex = 532 nm is nearly identical to that of the unilluminated trans-

azobenzene, except for a peak at 15.9°, which might be attributed to a small amount of cis-

azobenzene.  Owing to the lower absorbance at 532 nm relative to that at 355 nm (~170 times 

lower, Fig. 4.1), it is not surprising to expect a lower yield of trans-to-cis conversion with 532-

nm excitation.  The irradiances employed suggest (as is verified below) that the diffraction 

pattern is obtained with a sample which has been melted and cooled during the experiment. 
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Figure 4.3.  (a)  Powder X-ray diffraction of trans-azobenzene before and upon laser irradiation 

at 355 nm and 532 nm.   The standard patterns for the trans- and the cis-isomers are from Mostad 

and Rømming39 and from Harada and Ogawa,40 respectively.  Crystalline unit cells of (b) trans- 

and (c) cis-azobenzene.39,40  The detection limit of the powder XRD method is estimated to be a 

few percent.41 

 

A similar in-situ laser-XRD experiment was also performed on trans-stilbene (Fig. 4.4).  

In this case, however, upon 355-nm laser irradiation (there is no absorption at 532 nm), the 

characteristic trans-pattern diminishes without the appearance of new peaks.  These results were 

interpreted in terms of photoisomerization also occurring in stilbene.  The melting point of cis-

stilbene is -5 °C (compared to 125 °C for the trans-form),12 meaning any cis product generated at 

room temperature in this case would necessarily exist in the liquid phase, which would thus 

preclude the generation of a diffraction pattern.     
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Figure 4.4.  (a) Powder X-ray diffraction of trans-stilbene before and upon laser irradiation at 

355 nm and (b) the unit cell of trans-stilbene.  A standard pattern of the cis isomer could not be 

found in the literature. 

 

4.3.3 Fluorescence measurements 

Few measurements of the fluorescence of azobenzene have previously been collected in 

solution.7,42,43 This is because the fluorescence quantum yields of trans- and cis-azobenzene lie 

in the range of 10-6 to 10-7, and the intensities of their fluorescence spectra in DMSO, for 

example, are comparable to the Raman peak of DMSO itself.  This led Satzger et al. to use a 

modified Raman spectrometer to collect and to construct the trans- and cis-azobenzene spectra 

(the fluorescence maxima lie at 630 nm and 570 nm, respectively), which are reproduced in Fig. 

4.1.   The fluorescence spectrum of the cis- isomer is blue-shifted with respect to that of the 

trans-isomer.  We fit the spectrum of each isomer to a sum of two lognormal functions (provided 
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in the caption to Fig. 4.1), and this motivated our choice for modeling the results described 

below.  The spectrum of solid (or pure liquid) azobenzene is clearly different from those in dilute 

solution, as expected given the possible interactions of the chromophores in the pure solid.  In 

both cases, however, the species attributed to the cis-isomer is blue shifted with respect to that of 

the trans-isomer. 

The spectra of the initially solid trans-azobenzene samples in all of the “pulsed, solid 

film” and the “cw, polycrystalline powder” experiments are well described in terms of lognormal 

functions, per equations 1 and 2: 

                       𝐼𝑡𝑟𝑎𝑛𝑠(𝜆) =
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The maximum of equation 1 is at 679 nm and is determined by the weights of the two 

components comprising the function (0.88 and 0.12).  The maximum of equation 2 is at 624 nm.  

It is fortuitous that the characteristic wavelength in the logarithmic argument of the exponent of 

Icis, 628 nm, matches that of one of the components of Itrans.  The fluorescence spectra of the 

solid-state samples were then described by a linear combination of these trans and cis spectra: 

𝐼(𝜆) = 𝐴𝑡𝐼𝑡𝑟𝑎𝑛𝑠(𝜆) + 𝐴𝑐𝐼𝑐𝑖𝑠(𝜆)                  (3) 

In fitting the solid-state data, all parameters were kept constant except the weights of the 

individual profiles, At and Ac, as indicated in equation 3.  These “global fitting” results are 

compiled in Table 4.1, which summarizes the results of the fluorescence experiments. 
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Table 4.1. Decomposition of the azobenzene fluorescence with a summary of the spectra into 

that of the trans- and cis-Isomers. The spectra are globally fit to equations 1-3:  𝐼(𝜆) =
𝐴𝑡𝐼𝑡𝑟𝑎𝑛𝑠(𝜆) + 𝐴𝑐𝐼𝑐𝑖𝑠(𝜆).  Only the amplitudes, At and Ac, are varied.  The emission maxima of 

Itrans and Icis are 679 nm and 624 nm, respectively. 

 

Sample  Conditions At Ac 

solid film  pulsed laser, λex = 532 nm 0.86 0.14 

solid film  pulsed laser, λex = 355 nm 0.64 0.36 

polycrystalline 

powder  

cw laser, before melting, 

λex = 532 nm 

1.00 0.00 

polycrystalline 

powder  

cw laser, after melting,  

λex = 532 nm 

0.64 0.36 

 

Representative fluorescence spectra obtained from the “pulsed, solid film” experiments 

are presented in Fig. 4.5.  When λex = 355 nm, the fluorescence spectrum is broader than that 

obtained when λex = 532 nm; and it is also extended towards the blue.  The appearance of new 

emission in the blue is consistent with the generation of the cis-isomer.  (It was not possible to 

obtain a spectrum of the trans-isomer, as the laser power required to obtain a spectrum was also 

able to convert it to the cis-isomer.)  Owing to the weak optical density of trans-azobenzene at 

532 nm, it was impossible to produce more than 14% of the cis-isomer (Table 4.1) without the 

high peak power of the pulsed laser inducing sample damage.  It is noteworthy that irradiances in 

excess of 3 x 105 W/cm2 at 532 nm did not provide further spectral changes, and this will be 

commented on below. 
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Figure 4.5.  Fluorescence spectra of solid azobenzene at two excitation wavelengths and varying 

irradiances. 

a  λex = 355 nm.  Irradiance = 6 x 104 W/cm2.  

b  λex = 532 nm.  Irradiance = 1 x 105 W/cm2. 

c  λex = 532 nm.   The values of the irradiance were 3 x 105 W/cm2 (olive), 6 x 105 W/cm2 

(magenta), 12 x 105 W/cm2 (orange) and 30 x 105 W/cm2 (gray).  

 

Although all the laser powers used were above that which provided melting in the 

fluorescence microscopy experiment, there is no change in the spectra with increasing laser 

power.  Spectra were decomposed into two spectra, Itrans and Icis (equations 1-3).  Only the 

amplitudes of Itrans and Icis vary with λex.  355-nm excitation produces a spectrum that is broader 

than that obtained with λex = 532 nm and extended towards bluer wavelengths, which is 

consistent with the optical density of trans-azobenzene being ~170 times greater at 355 nm than 

at 532 nm.  Results are summarized in Table 4.1.  Raman peaks are evident in panels b and c. 
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In the parallel set of “cw, polycrystalline powder” experiments, a fluorescence 

microscope and a cw laser operating at 532 nm were employed.  Because the cw laser could be 

focused to a spot size of 2.6 μm with the microscope objective, despite the low optical density of 

azobenzene at 532 nm, sufficiently high irradiances could be obtained to generate greater 

amounts of the cis-isomer than in the pulsed experiment at 532 nm described above.  In addition, 

the microscope furnished the additional benefits of not only enabling the efficient collection of 

fluorescence spectra of the photoisomerization reaction but also permitting the direct visual 

observation of the sample (which undergoes melting at these large irradiances).  Results are 

presented in Fig. 4.6 and Table 4.1.  Up to an irradiance of 1 × 105 W/cm2, the spectrum was 

adequately represented by 100% Itrans(λ).  On the other hand, at irradiances greater than 1 × 105 

W/cm2, the spectrum broadens towards bluer wavelengths; and melting is observed.  For 

example, at 7.6 × 105 W/cm2 the spectrum is well described by a population of 64% trans- and 

36% cis-isomers.  At irradiances greater than 7.6 × 105 W/cm2, the spectra do not evolve further.  

(A similar phenomenon was observed with our experiments for solid films, where no spectral 

changes were observed beyond 3 × 105 W/cm2.)  That the spectral changes in both the  “pulsed, 

solid film” and the “cw, polycrystalline powder” experiments reach a plateau at a certain 

irradiance is most likely because at a given irradiance the melted and isomerized azobenzene 

“spills” out of the region being interrogated and hence cannot be detected.  As noted above in the 

context of the X-ray experiments, 532 nm is not an optimum wavelength at which to perform 

these experiments.  The high irradiances required reflect can be attributed to the low extinction 

coefficient and the exceptionally low fluorescence quantum yields of the two isomers. 
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4.4 Discussion 

There is a rich literature treating both the photoinduced properties of azobenzenes in 

solution7-11 as well as in polymer films and liquid crystals (see the following citations and 

references contained within).15,17-25,28-33 Much less work has been performed on pure solids. 26,27  

The work on polymer films and liquid crystals provides convincing evidence that illumination of 

azobenzene derivatives generates significant macroscopic structural changes to the material and 

that these structural changes are correlated with large-scale structural changes of the azobenzene 

derivatives.  For example, applying a rotational diffusion model to polarized absorption spectra 

of azobenzene-containing polyglutamate films, Sekkat et al.44 used the absorption anisotropies at 

360 and 420 nm (measuring the trans form and photoproduct, respectively).  That is, at various 

times, they measured [A(λ) – A(λ)]/[A(λ) + 2A(λ)], where λ = 360 nm or 420 nm.  The 

anisotropy is related to the second Legendre polynomial and, hence, to the order parameter.32 

From these data, it was determined that the transition dipole moment of the photoproduct was, on 

average, at about 57° with respect to that of the initially excited trans species.  Karageogiev et 

al.45 argued that the optically-induced mechanical manipulation of azopolymers was a result of 

local softening of a region of the polymer, rendering it fluid, while the rest of the matrix remains 

rigid.   

Our experiments are most nearly related to those of Koshima et al.26 and Bushuyev et 

al.27 , who studied pure solid samples: polycrystalline plates of trans-azobenzene and single-

crystal needles of fluorinated cis-azobenzene, respectively.  In each case, light-induced, 

reversible, macroscopic structural changes of the solids are observed and it is suggested that the 

structural changes are triggered by large-amplitude isomerization.  The results, while consistent 



www.manaraa.com

74 

 

with structural change in the material are not, however, compelling evidence that a trans-to-cis 

isomerization occurs.   

For example, Koshima et al.26 investigated 525 × 280 × 5-μm3 polycrystalline plates of a 

dimethyl amino azobenzene.  They cite optical absorption spectra, NMR spectra, and X-ray data 

to document structural changes after illumination.  These measurements all provided evidence 

that changes are induced in the material upon illumination; but they were only suggestive of 

photoinduced trans-to-cis isomerization.  Namely, in the region of 350 nm to 600 nm, slight 

changes to the shape of the absorption spectra of the plates are observed after 30 seconds of 365-

nm irradiation at 5 mW/cm2.  Also, absorption of the plates dissolved in benzene decreases in 

this spectral region after illumination.  The work of Satzger et al., however, indicates that 

production of the cis-isomer should increase the absorption between 350 and 600 nm (Fig. 4.3).  

In addition, the NMR data of Koshima et al.26 indicate that after illumination the ratio of the cis- 

to trans-azobenzene is only 1/160, which seems too small an amount to generate the evident, 

large-scale structural change they observe in their sample.  Finally, their X-ray data, taken over a 

limited angular range (5° < 2θ < 25°) also indicate only a small reduction of the signatures 

attributed to the trans-species subsequent to illumination. 

The X-ray data reported by Bushuyev et al.27 for single-crystal needles (up to 10-20 μm 

thick) of fluorinated cis-azobenzene, on the other hand, show that a negligible amount of cis-to-

trans isomerization has occurred subsequent to illumination.  This may partly be attributed to the 

fluorination of the azobenzene, but it is likely more significant that they start with cis single 

crystals.  For example, Fausto and coworkers46,47 measured and computed the vibrational spectra 

of trans- and cis-stilbene in solid argon and xenon matrices at 15 K.  They were unable to 

produce a photoinduced trans-to-cis isomerization but did succeed in generating trans-stilbene 
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from cis-stilbene in the matrices.  The results of these two groups suggest that generating a 

genuine trans-to-cis isomerization in pure solid azobenzene may be unlikely.  As early as 1964, 

Tsuda and Kuratini48 demonstrated that solid cis-azobenzene could be photo isomerized to the 

trans form.  

MacGillivray and coworkers,47 however, have demonstrated a single-crystal to single-

crystal photoinduced synthesis of a starting material containing azobenzene in a trans 

conformation.  The results present here demonstrate that photoinduced trans-to-cis isomerization 

occurs in pure polycrystalline azobenzene. 

4.5 Conclusions 

It has been convincingly and elegantly demonstrated that polymer films and liquid-crystal 

polymers containing azobenzene derivatives26,27,49-52 all undergo large-scale, reversible changes 

that are induced upon excitation of the azobenzene chromophore; and it has very reasonably been 

inferred that these changes are a result of a large-amplitude trans-to-cis photoisomerization of the 

azobenzene derivative. Koshima et al.26 and Bushuyev et al.27 address this issue more directly by 

studying pure solid samples of azobenzene derivatives. The work presented here confirms (by 

means of X-ray diffraction and fluorescence spectroscopy) that the photoinduced structural 

change in trans-azobenzene itself is an isomerization to the cis-form.  It also demonstrates, 

consistent with the observations of MacGillivray and coworkers,47 that the isomerization occurs 

via the solid phase.   For pure polycrystalline trans-azobenzene, we have shown that this occurs 

at 280 mW/cm2, in agreement with the similar studies on related samples by Koshima et al.26 and 

Bushuyev et al.27  Furthermore and, perhaps most importantly, our results clearly indicate that 

subsequent to isomerization of the solid at this low irradiance, the sample melts.  We suggest that 

the fluidity afforded by this sample-induced melting is very likely a crucial aspect of the 
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mechanical changes that have been the object of such intense investigation over the years.  

Finally, a very practical result of this work is that it demonstrates that trans-azobenzene can be 

used as easily obtainable and well-defined control for monitoring photoinduced structural 

changes in X-ray diffraction experiments. 
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Chapter 3 Supplementary Information 

Methods 

Melting experiments with low irradiance.    Polycrystalline trans-azobenzene was subjected to 

470-nm radiation (LED, Thorlab).  The crystals start to melt at an irradiance of 240 mW/cm2.  A 

thermocouple was placed in contact with the crystals during the transformation and registered a 

temperature of 50-54 0C (the melting begins after ~30 s of exposure).  Melting was more 

pronounced with an irradiance of 280 mW/cm2 (melting starts “instantaneously”), which 

provided a more facile measurement since during melting the thermocouple tip was covered with 

molten material.  Here, the temperature was found to be 54-57 0C.  In both instances, these 

temperatures are lower than that of the melting point of pure trans-azobenzene (68 °C).  This 

suggests that a trans-to-cis isomerization occurs in the solid and that the presence of the newly-

formed cis-isomer depresses the melting point of the sample.  As a control experiment, coumarin 

153 (m.p. of 164-168 0C) was subjected to a range of irradiances from 280 mW/cm2 to 800 
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mW/cm2, over which no melting was observed for an exposure time of 2 min in each case.  At 

the maximum irradiance, a temperature of 70-75 0C, slightly in excess of the melting point of 

trans-azobenzene.  It is likely that the temperature of the sample is higher because in the absence 

of melting optimum thermal contact between the sample and the thermocouple cannot be 

achieved.  (The surface of the coumarin crystals blackens at the maximum irradiance, possibly as 

a result of photo degeneration of dye).  

 

Figure S4.1. LED light illuminates the crystals.  During melting, the temperature is measured 

with a thermocouple. 

 

Movie S4.1.  Trans-azobenzene subjected to 470-nm illumination at irradiances of 200 mW/cm2 

and 240 mW/cm2.  The movie shows melting and movement of the azobenzene crystals in the 

illumination are beginning at an irradiance of 240 mW/cm2.  The surface area of the crystal was 

approximately 0.25 mm2. 

 

Movie S4.2.  Coumarin 153 subjected to 470-nm illumination at irradiances of 600 mW/cm2 and 

800 mW/cm2.  Coumarin 153 does not melt even at the maximum intensity for a 2-min exposure.  

The crystal surface area was approximately 0.3 mm2 
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